leafleafleafDocy banner shape 01Docy banner shape 02Man illustrationFlower illustration


Protective effects and regulatory mechanisms of Shen-shuai-yi recipe on renal fibrosis in unilateral ureteral obstruction-induced mice.

Renal fibrosis (RF) is a common pathological feature of chronic kidney disease (CKD), which remains a major public health problem. As now, there is still lack of chemical or biological drugs to reverse RF. Shen-shuai-yi Recipe (SSYR) is a classical Chinese herbal formula for the treatment of CKD. However, the effects and mechanisms of SSYR in treating RF are still not clear. In this study, the active constituents SSYR for treating RF were explored by UHPLC-Q-Orbitrap HRMS. Bioinformatics analyses were employed to analyze the key pharmacological targets and the core active constituents of SSYR in the treatment of RF. In experimental validation, vehicle or SSYR at doses of 2.12 g/kg/d and 4.25 g/kg/d were given by orally to unilateral ureteric obstruction (UUO) mice. 13 days after treatment, we detected the severity of renal fibrosis, extracellular collagen deposition and pre-fibrotic signaling pathways. Bioinformatics analysis suggested that signal transducer and activator of transcription 3 (STAT3) was the core target and lenticin, luteolin-7-O-rutinoside, hesperidin, kaempferol-3-O-rutinoside, and 3,5,6,7,8,3′,4′-heptamethoxyflavone were the key constituents in SSYR for treating RF. SSYR significantly reduced the expressions of fibronectin (FN), α-smooth muscle actin (α-SMA), collagen-I and alleviated renal interstitial collagen deposition in UUO kidneys. In mechanism, SSYR potently blocked the phosphorylation of STAT3 and Smad3 and suppressed the expression of connective tissue growth factor (CTGF). Collectively, SSYR can ameliorate RF inhibiting the phosphorylation of STAT3 and its downstream and reducing the collagen deposition, suggesting that SSYR can be developed as a novel medicine for treating RF.

The roles of serine hydrolases and serum albumin in alisol B 23-acetate hydrolysis in humans.

lisol B 23-acetate (AB23A), a major bioactive constituent in the Chinese herb Zexie (), has been found with multiple pharmacological activities. AB23A can be readily hydrolyzed to alisol B in mammals, but the hydrolytic pathways of AB23A in humans and the key enzymes responsible for AB23A hydrolysis are still unrevealed. This study aims to reveal the metabolic organs and the crucial enzymes responsible for AB23A hydrolysis in human biological systems, as well as to decipher the impact of AB23A hydrolysis on its biological effects. The hydrolytic pathways of AB23A in human plasma and tissue preparations were carefully investigated by using Q-Exactive quadrupole-Orbitrap mass spectrometer and LC-UV, while the key enzymes responsible for AB23A hydrolysis were studied via performing a set of assays including reaction phenotyping assays, chemical inhibition assays, and enzyme kinetics analyses. Finally, the agonist effects of both AB23A and its hydrolytic metabolite(s) on FXR were tested at the cellular level. AB23A could be readily hydrolyzed to form alisol B in human plasma, intestinal and hepatic preparations, while human butyrylcholinesterase (hBchE) and human carboxylesterases played key roles in AB23A hydrolysis in human plasma and tissue preparations, respectively. It was also found that human serum albumin (hSA) could catalyze AB23A hydrolysis, while multiple lysine residues of hSA were covalently modified by AB23A, suggesting that hSA catalyzed AB23A hydrolysis its pseudo-esterase activity. Biological tests revealed that both AB23A and alisol B exhibited similar FXR agonist effects, indicating AB23A hydrolysis did not affect its FXR agonist effect. This study deciphers the hydrolytic pathways of AB23A in human biological systems, which is very helpful for deep understanding of the metabolic rates of AB23A in humans, and useful for developing novel prodrugs of alisol B with desirable pharmacokinetic behaviors.

Elucidating a fresh perspective on the interplay between exosomes and rheumatoid arthritis.

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by chronic synovitis and the destruction of bones and joints. Exosomes are nanoscale lipid membrane vesicles originating from multivesicular bodies and are used as a vital means of intercellular communication. Both exosomes and the microbial community are essential in RA pathogenesis. Multiple types of exosomes from different origins have been demonstrated to have effects on various immune cells through distinct mechanisms in RA, which depend on the specific cargo carried by the exosomes. Tens of thousands of microorganisms exist in the human intestinal system. Microorganisms exert various physiological and pathological effects on the host directly or through their metabolites. Gut microbe-derived exosomes are being studied in the field of liver disease; however, information on their role in the context of RA is still limited. Gut microbe-derived exosomes may enhance autoimmunity by altering intestinal permeability and transporting cargo to the extraintestinal system. Therefore, we performed a comprehensive literature review on the latest progress on exosomes in RA and provided an outlook on the potential role of microbe-derived exosomes as emerging players in clinical and translational research on RA. This review aimed to provide a theoretical basis for developing new clinical targets for RA therapy.

LncRNA NEAT1 Promotes High Glucose-Induced Mesangial Cell  Hypertrophy by Targeting miR-222-3p/CDKN1B Axis.

Glomerular hypertrophy is an early morphological alteration in diabetic nephropathy. Cyclin-Dependent Kinases have been shown to be required for high glucose (HG)-induced hypertrophy; however, the upstream regulators of CDKN1B in glomerular hypertrophy remain unclear. Herein we describe a novel pathway in which Long noncoding RNA (lncRNA) NEAT1 regulates the progression of mesangial cell hypertrophy via a competing endogenous RNA (ceRNA) mechanism. Real-time PCR was performed to detect the relative NEAT1 and miR-222-3p expressions and further confirmed the relationship between NEAT1 and miR-222-3p. Cell cycle was evaluated by flow cytometry. The related mechanisms were explored by Western blot, RNA immunoprecipitation and chromatin immunoprecipitation assay. We show that NEAT1 forms double stranded RNA (dsRNA) with miR-222-3p, thus limiting miR-222-3p’s binding with CDKN1B. This release of CDKN1B mRNA leads to elevated CDKN1B protein expression, resulting in hypertrophy. In addition, we demonstrated that STAT3 which is activated by HG induces the transcription of NEAT1 by binding to its promoter. Our findings underscore an unexpected role of lncRNAs on gene regulation and introduce a new mode of proliferation regulation in mesangial cells.

Mechanism research of Bu-Shen-Huo-Xue formula against renal fibrosis in rats with 5/6 nephrectomy via E-cadherin, α-SMA, and TGF- β 1, Clinical Nephrology

OBJECTIVE:Renal fibrosis generally results in renal failure during the end stage of chronic renal diseases. There are many cell factors including E-cadherin, α-SMA, and TGF-β1 influencing deposition of extracellular matrix and leading to renal fibrosis. As the most important and widely-used therapy for various diseases in China for thousands of years, traditional Chinese medicine (TCM) provides a novel treatment for renal fibrosis. For clinical application, we explore the effect of Bu-Shen-Huo-Xue formula (BSHX), a traditional Chinese herbal formula, on E-cadherin and α-SMA in rats with 5/6 nephrectomy.

MATERIALS AND METHODS:Sprague-Dawley rats were subjected to 5/6 nephrectomy to induce chronic renal failure (CRF); they were divided into three groups including a CRF control group, a BSHX group, and a Cozaar group, and compared with a normal control group. After 8 weeks of therapy with the respective drug, E-cadherin, α-SMA, and TGF were detected by immunohistochemistry assays in renal tissues.

RESULTS:As the immunohistochemistry assays indicated, BSHX could significantly enhance the expression of E-cadherin and depress the levels of α-SMA and TGF-β1 expression in rats’ renal tissues with 5/6 nephrectomy.

CONCLUSION:BSHX can effectively relieve the renal fibrosis in rats with 5/6 nephrectomy via the change of cell factor levels including enhancement of the expression of E-cadherin and depression of the levels of α-SMA and TGF-β1 expression.